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Abstract
The diversity of the immune repertoire is grounded on V(D)J recombinations in severalloci. Many algorithms and software detect and designate these recombinations in high-throughput sequencing data. To improve their efficiency, we propose a multi-loci seedidentification through an Aho-Corasick like automaton as well as a seed-based gene fil-tration. These algorithms were implemented into Vidjil-algo, used routinely by severallabs for the analysis of hematologic malignancies. We benchmark the results of Vidjil-algo and of MiXCR on five datasets, evaluating the specificity and sensitivity of the de-tection, as well as the adequation of the designation to manually curated sequences.Compared to the previous algorithms, the new algorithms implemented in Vidjil-algobring speedups between 3× and 30×, with a smaller memory footprint and withoutquality loss in results. They enable to precisely annotate in a few minutes millions ofsequences coming from V(D)J recombinations, including incomplete V(D)J-like recombi-nations, improving our knowledge on immune repertoires.
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1. Introduction
V(D)J recombinations are genetic events occurring in immature immunologic cells, the lym-phoblasts. These recombinations are an important factor of the diversity of the receptors on B-and T-cells (Tonegawa, 1983). A V(D)J recombination is the result of a random process combininga V gene, possibly a D gene, and a J gene on the genome, building either VDJ or a VJ recombi-nation. The recombination involves enzymes called recombination-activating genes (RAGs). Atthe junction of these V, D, and J gene segments, nucleotides can be removed and other randomones can be added (see Figure 1), improving again the diversity. Depending on the cell type,these recombinations occur at several loci. Human B-cell receptors have an heavy chain (IGH)and a light chain λ or κ (denoted here IGL and IGK), whereas T-cell receptors either have γ and

δ chains (TRG and TRD) or α and β chains (TRA and TRB).
T- and B-cell receptors are crucial for recognizing antigens, which is a key part of the adap-tative immune response. Identifying and possibly quantifying V(D)J recombinations helps thusdescribe the immune response more efficiently. Moreover, a V(D)J recombination can be seen asan identifier – thatmay be unique – of a clonal population, or shortly clone, that is a cell populationcoming from a same lymphoblast. This identifying sequence is called a clonotype, but there maybe several clonotypes of the same clone (at different loci or alleles) or several different cloneswith the same clonotype (that may differ elsewhere). In hemato-oncology, V(D)J recombinationsare thus used to identify and track clonotypes along time in blood cancers (Cavé et al., 1998). Li-brary preparation for these studies was recently standardized by the EuroClonality-NGSworkinggroup (Brüggemann et al., 2019; Langlois de Septenville et al., 2022; Villarese et al., 2022).
On the software side, since the 1980s, after the pioneering work by the Universität zu Kölnwith DNAPLOT, many tools for the in-depth analysis of V(D)J recombinations were developed byIMGT (Giudicelli et al., 1998; Lefranc, 2011). In the 2010s, new methods and software were pro-posed to analyze these V(D)J recombinations in high-throughput sequencing data with millionsof sequences, such as (Arnaout et al., 2011), IgBlast (Ye et al., 2013), Decombinator (Thomaset al., 2013), miTCR (Bolotin et al., 2013), TCRKlass (Yang et al., 2014), Vidjil (Giraud et al., 2014),MiXCR (Bolotin et al., 2015), IMSEQ (Kuchenbecker et al., 2015), Partis (Ralph and Iv, 2016),IgReC (Shlemov et al., 2017), and IGoR (Marcou et al., 2018). Afzal et al. (2019) did a compari-son of several of those software tools. These Adaptive Immune Receptor Repertoire (AIRR-Seq)methods and software, also called Repertoire Sequencing (RepSeq) (Benichou et al., 2012), devel-oped and invented text algorithmics methods adapted to the specificity of V(D)J recombinations.
We call here:

• detection, the process of identifying the presence of a V(D)J recombination within a givenDNA sequence and determining the related chain (the locus);
• designation, the process of determining the specific germline V, (D), and J genes thathave undergone recombination, as well as identifying nucleotide deletions, or insertionsthat may have occurred at the junction between those genes, and possibly detecting themutations in the whole sequence;
• clusterization, the process of gathering equal or similar recombinations, according to somecriteria, into clonotypes.

V

AATA
D

GCT
J

Figure 1 – A VDJ recombination. After removal of a few nucleotides at the junction of V,D, and J, genes, AATAwas inserted between gene segments V andD and GCTwas insertedbetween gene segments D and J.
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Table 1 – Regular and incomplete/irregular human V(D)J and V(D)J-like recombinationsanalyzed by vidjil-algo. There are seven loci with at least 16 recombination possibil-ities (called recombination systems). For example, on the 14q11.2 TRD locus, apart fromthe regular recombination, there are at least three known systems of irregular recom-binations (TRD+) as well as two systems involving the very close TRA locus (TRA+D).These recombination systems are formally described in the JSON file homo-sapiens.g,and the corresponding 5’ and 3’ genes (V and J genes for the regular recombinations) areindexed in a Aho-Corasick automaton. Note also that, for short genes (J genes, and Dgenes involved in incomplete recombination systems), both the genes and 60bp of theirdownstream/upstream region are indexed (Duez et al., 2016).
locus regular recombinations incomplete/irregular recombinations
14q1.12 TRA Va-Ja7q34 TRB Vb-(Db)-Jb TRB+ Db-Jb14q11.2 TRD Vd-(Dd)-Jd TRD+ Vd-Dd3, Dd2-(Dd)-Jd, Dd2-Dd3TRA+D Vd-(Dd)-Ja, Dd-Ja7p14 TRG Vg-Jg14q32.33 IGH Vh-(Dh)-Jh IGH+ Dh-Jh22q11.2 IGL Vl-Jl2p11.2 IGK Vk-Jk IGK+ Vk-KDE, INTRON-KDE

Most V(D)J analysis software detect and designateV(D)J recombinations at the same time, foreach of the input sequences, and some of them cluster sequences thereafter. Vidjil-algo rathercluster sequences before the full designation (Giraud et al., 2014). Indeed, for many applications,the designation for each sequence is not useful and more efficient alignment-free approaches,including k-mers indexing, can cluster the sequences after detection.
A mature B- or T- cell needs only two V(D)J recombinations, on only one allele. However,V(D)J recombinations may occur at seven diffent loci (IGH, IGL, IGK, TRG, TRD, TRA, TRB, seeTable 1). One may find unproductive recombinations on the other allele, or even in the TR lociin B-cells. Some of these non-productive recombinations may be incomplete or irregular, suchas D-J recombinations on the IGH locus or V-KDE on the IGK, the RAGs enzymes handling theKDE sequence as a J gene. These bi-allelic, incomplete, or irregular recombination are evenmorefrequent in pathological samples, and are also tracked in hemato-oncology studies (Brüggemannet al., 2019). Altogether, one frequently studies datasets with V(D)J or V(D)J-like recombina-tions on different loci. Table 1 lists ℓ = 16 different known recombination systems. Some AIRR-Seq/RepSeq software allow to analyze several systems. The previous Vidjil-algo algorithm wasable to detect recombinations in time O(ℓn), where n is the length of the input sequence and ℓthe number of recombination systems.
We propose here a new algorithm able to process at once all recombinations systems, detectany V(D)J or V(D)J-like recombinations in time O(ℓ′n), where ℓ′ ≤ ℓ is an average number ofgene labels per position, with usually ℓ′ ≪ ℓ (Section 2). We also propose a filtering algorithmto improve the V(D)J designation, in time O(M ′n) instead of the previous O(Mn), where M isthe total size of genes and usually M ′ ≪ M (Section 3). These algorithms were implementedin vidjil-algo: We finally report benchmarks, both on simulated and real datasets, on the qualityand the speed of detection and designation (Section 4)1. The new algorithms bring speedupsbetween 3× and 30×, with a smaller memory footprint and without quality loss in results.

1Transparency on Benchmarks. The preprint version 2 on which the recommendation is based (https://doi.org/
10.24072/pci.mcb.100268) includes benchmarks in Sections 4.3 and 4.4, originally conducted using the develop-ment version (commit 7623483f3) of vidjil-algo. The final data reported here corresponds to the stable release2025.02 of vidjil-algo. The merge of the development branch into the release branch involved minor updates, partic-ularly related to seed adjustments. To ensure long-term reproducibility, all benchmarks have been re-run using thestable release. As a result, small variations were observed, and Sections 4.3 and 4.4 have been updated accordingly.
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2. Linear detection of multi-loci V(D)J recombinations
An efficient strategy to detect V(D)J recombinations in a sequence is to look for a positionsplitting the sequence into two zones the 5’ zone with significant hits from a given type (e.g. Vgenes) followed by a 3’ zone, with significant hits from another type (e.g. J genes). In the originalVidjil-algo version, this strategy was used successively for all recombination systems listed inTable 1 (Giraud et al., 2014).
We use here an Aho-Corasick automaton, well-suited to look for a set of patterns inside asequence. This search has a time complexity linear in the sequence size and independent fromthe size of the set of patterns (Aho and Corasick, 1975). Note that Decombinator (Thomas et al.,2013) also relies on an Aho-Corasick automaton by indexing some tags from the V, D and J genesin order to designate the sequences more efficiently. In our case, the automaton will be used forthe detection of recombinations and it does not index V, D, and J genes, but rather spaced seedsextracted from these genes. Using the automaton enables to store in a single pass several typesof seeds and to detect, in linear time, the recombination system (including incomplete/irregularrecombinations), together with an estimation of the boundaries of the 5’ and 3’ zones.

2.1. Seeds and seed occurrences
A word of size n is a sequence of symbols u1u2 ... un, and we denote a factor of a word by

u[i , j ] = uiui+1 ... uj . We consider symbols denoting nucleotides, Σ = {A,C ,G ,T}, as well asmatch (#) and don’t-care (-) symbols. A gene g ∈ Σ∗ is a sequence of nucleotides, and G is theset of genes. Each gene g ∈ G has a label T (g) such as V−
H or J+B . The label encodes both theV/J type, the locus, and the strand information.

A spaced seed u (also called spaced k-mer) is a sequence of # and - symbols. We denoteby seed(w , u) = v the projection of the seed u on the word w of the same length, that is, for
1 ≤ i ≤ |w | = |u|, vi = wi if ui = # and otherwise vi = -. For example, seed(ATCG, ##-#) =
AT-G. The weight of a seed is its number of # symbols. For example, weight(##-#) = 3. We usethere the seeds 12s = ######-###### and 10s = #####-#####, with weight(12s) = 12 and
weight(10s) = 10. Spaced seeds are more effective than consecutive seeds of the same weightto "seed" approximate alignments (Brown, 2008). For example, on a sequence of at least 40nucleotides, the spaced seed 12s canmatch any alignmentwith up to 12%mismatches, comparedto 4% mismatches for the contiguous seed of size 12. Optimization of such seeds is discussedat the end of the paper.
2.2. Indexation

We extract the seed occurrences at each position of a V, (D), or J genes according to a givenseed. Let Fact(s) be the set of all the factors of s .We callP(g , u) the set ofwords that are factor ofa gene g relatively to the seed u: P(g , u) = {w ∈ Σ∗ | ∃i , seed(gi ...i+|u|−1, u) = seed(w , u)}. As anexample, P(GCCAT, ####) = {GCCA, CCAT}, whereas P(ACAC, #-#) = {AAA, ACA, AGA, ATA, CAC, CCC,
CGC, CTC}.

There are at most O(|g |4z) of these words, where z = |w | − weight(w) is the number ofdon’t-care symbols in w . Typical seeds have z = 1 or 2. All words from P(g , u), for all genes
g ∈ G, are indexed by an Aho-Corasick automaton (see Figure 2). Note that, in practice, failuretransitions are removed by replacing them with four transitions, corresponding to the four nu-cleotides.More specifically a failure transition to a state representing sequence s will be replacedby a transition to state s ·c when it exists, with c one of each nucleotide.When the state s ·c doesnot exist, we will recursively follow the failure transition of state s until a state can be reachedthrough a transition c . If no such state exists, the failure transition will be replaced by a transitionby c to the initial state. Thus the (nondeterministic) Aho-Corasick automaton is transformed inlinear time into a (deterministic) factor automaton while keeping the same number of states.
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V+A
A
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V+A
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V+C
A J+, V+CA
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Figure 2 – Aho-Corasick automaton for P(ACAC, #-#) ∪ P(CCAC, ####), that is for the pro-jected seeds A-A, C-C, and CCAC. The gray arrows correspond to the failure transitionsin the Aho-Corasick automaton. They can be seen as ε-transitions and are removed in apre-processing step, without changing the number of states. The accepting states havebeen labeled with V+ for the first seed and with J+ for the second one. Thus the state
CCAC is labeled with J+ but it is also labeled with V+ as its failure function points to anaccepting state labeled with V+.

Input: a reduced label sequence a = a1a2 ... an
δ ← 0; δmax ← 0
i ← 0; j ← 0

For each q from 1 to n

Invariant: δ = |a[1, q − 1]|V − |a[1, q − 1]|J
if at = V, then δ ← δ + 1

if at = J, then δ ← δ − 1

if δ > δmax, then δmax ← δ and i ← q

if δ = δmax, then j ← qEnd forReturn i and j

δ

i j

1 11 12 15 16 19

5’ zone 3’ zone
- - - V V V J - - V V - - - - J J J -

Figure 3 – (Left) O(n) time search of the (i , j) plateau reached around the V-J recom-bination zone. The actual implementation (affectanalyser.hpp) uses bitsets to checkthe values of at , and also computes, in the same linear time, the values |a[1, i ]|V, |a[1, i ]|J,
|a[j , n]|V et |a[j , n]|J for filters and the statistical evaluation. (Right) On this reduced labelsequence, the maximal values of δ are δ(11) = ... = δ(15) = 4. Thus here i = 11 and
j = 15.

The accepting states, that is here the end of seed occurrences, are labeled with the list ofthe labels T (g) of the genes g occurring at that point – there can be one or several such genes.Note that, contrarily to a lookup table index, the Aho-Corasick automaton may store words withdifferent lengths, representing different spaced seeds (possibly with different weights) accordingto the recombination system, the gene V/J type, or even an individual gene.
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2.3. Querying
Querying a sequence s simply means traversing it while following the transitions in the au-tomaton, in O(|s|) time. All accepting states encountered indicate the end of at least one spacedseed that occurs in the sequence. The output is a label sequence, that is a sequence of list ofgene labels such as Aff (s,G) = - J+G - V+H V+H V+H J+H - - V+H V+H - V−

B - - J+H J+H J+H -. As there maybe several gene labels per state, the label sequence can have a maximum size of O(nL), where
L ≤ ℓ is the maximum number of gene labels per state. L is considered constant (on the usualgermlines, L ≤ 6). Calling ℓ′ the average number of gene labels per state, the label sequence hasan average size of O(nℓ′). On the usual germlines, ℓ′ = 1.14 gene labels per accepting state.

One can then focus on a reduced label sequenceAff (s,G)±
LOC focusing on V and J of one locusLOC and one strand. For example, focusing on the labels V+

H and J+H , we consider a reduced labelsequence Aff (s,G)+IGH = - - - V V V J - - V V - - - - J J J -.
Given a gene label t , we denote by |s|t = |{P(g , u) ∩ Fact(s) such that T (g) = t}|, thenumber of t in the label sequence Aff (s,G), with the seed u being used for t . On the sameexample, |s|V+H = 5.

2.4. Locus estimation
The label sequence is analyzed according to the two most probable gene labels2 (see p-valueestimation section below). These two gene labels may represent complete or incomplete V(D)Jrecombinations (Table 1), but unexpected recombinations can also be detected and are taggedas such.

2.5. Recombination detection
Given these two most probable gene labels, the algorithm detects a 5’ zone with seed oc-currences from a given label followed by a 3’ zone with seed occurrences of another label, butallowing other labels, such as a few (random) J+H or even V−

B in a significant V+
H zone.

Let a = Aff (s,G)±
LOC a reduced label sequence. We look for positions t such as δ(t) =

|a[1, t]|V − |a[1, t]|J is maximal (many V and few J at the left). This is equivalent to maximize
δ′(t) = |a[t, n]|J − |a[t, n]|V (many J and few V at the right), because, for every t , δ(t) − δ′(t) =
|a|V − |a|J is constant. The algorithm described on Figure 3 computes, in linear time, both posi-tions i ≤ j that are the first and the last to maximize δ, allowing to detect in the label sequencethe 5’ and 3’ zones.
2.6. p-value estimation

To estimate the significance of the (i , j) zone split and exclude chimeric sequences such as
VVVV–-JJJ–-VVV–JJ, the first check is that the 5’ zone has significantly more 5’ seeds than the3’ zone, that is |a[1, i ]|V ≥ τ · |a[j , n]|V with τ = 2, as well as the symmetrical check for the 3’zone. The p-value of a recombination is then estimated as follows. We call p′

V the probability toobserve as many labels V in a random label sequence, and estimate p′
V = B(pV, |a[1, i ]|V, i), where

B(p, k , n) =
∑

k≤t≤n

(n
t

)
pt(1−p)(n−t) is the cumulated probability to have an event of probability

p at least k times out of n in a Bernoulli schema. This is a very simple model, as the occurrencesof seeds are actually not independent.
The probability p to have a label V on fg random seed of weight k (its number of matchsymbols) is estimated as p = NV/4k , where NV is the number of seeds V stored in the index.

2The actual implementation, in O(ℓ•n) time, builds a bitset for each of the ℓ• ≤ 4ℓ gene labels for at least oneseed in the read. The bitsets of the two most probable gene labels are later reused for the recombinaison detection.The step could however be improved in time O(ℓ′n), that is the size of the label sequence, by counting at once thegene labels, then by building the bitsets only for the two most probable ones.
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Figure 4 – V(D)J designation by dynamic programming, declared in segment.h. See Jonesand Pevzner (2004, chapter 6) for an introduction on dynamic programming methods tocompare sequences. Grayed out triangles show parts excluded from the computation. a)Search of the best alignments between the read with a V gene and a J gene, in O(Mn)time, where M is the total size of indexed genes and n the size of the read. CandidateV and J segments are independently predicted. b) When the best alignements make thecandidate V and J segments overlap on o ≤ n positions, the best split point is found byanother search in time O(mo), where m ≪ M is the total size of considered V and Jgenes. c) In the case of a VDJ-like recombination, the central segment is predicted by alocal aligment in time O(M ′(d + 2δ)), whereM ′ is the total size of indexed D genes and
d +2δ ≤ n is the size of the zone where the D segment is searched. Overlaps between Vand D or between D and J candidate segmentes are handled as previouly. The algorithmfinally runs in time O((M +M ′)n).

We similarly define p′
J = B(pJ, |a[j , n]|J, n − j + 1), and roughly estimate the p-value of a V-

J recombination as p′
V + p′

J. As a multiple testing correction, this p-value is multiplied by thenumber of processed sequences, giving an E-value.
Altogether, when this E-value is below a given threshold, a V(D)J recombination has beendetected. The middle of the recombination zone can then be estimated at around (j+ i+k−1)/2.The next section details how we precisely designate such a recombination.

3. Fast V(D)J designation through seed-based heuristics
Designating a V(D)J recombination requires to compare the sequence against all V(D)J germli-ne genes from the detected locus. Precisely aligning a gene against V, (D), and J germline genescan be done with dynamic programming techniques (Figure 4). This alignment is done in time

O(Mn), where M is the total length of the considered V and J genes. As V genes are about300bp in length, this is time consuming. Banded alignments (Chao et al., 1992) bring some im-provements, however due to the deletions that occur at the end of V genes or the start of Jgenes, the constraint on the alignment is imposed on a single part on the gene to prevent restric-tions on the number of deletions (Figure 4a and c). However, aligning all the genes of a givenlocus to a given sequence is still very long, in particular for some locus such as the B-cell heavychain (IGH) with about 350 genes and alleles.
3.1. Selecting candidate genes with seed-based heuristics

Several V(D)J designationmethods use seed-based heuristics (eg. (Bolotin et al., 2015; Thomaset al., 2013; Ye et al., 2013)). We propose here to use the previous filtering phase to speed-upthe designation phase. The V(D)J detection heuristic presented in the previous section, givingan information on the gene label in sequences, is extended to identify genes which have seeds
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occurring in any sequence, in order to determine against which genes the sequence s will bealigned.
For each gene g , the accepting states in the Aho-Corasick automaton are now marked withthe gene identifier I (g) along with the gene label T (g). Computing, still in linear time, the labelson the gene identifiers, we consider CG(s) = {g ∈ G | |s|I (g) > 0} the set of genes, having atleast one seed in the sequence s , and nmax = maxg∈G |s|I (g) the maximal number of seeds from

s that matched on a gene. We want to align s against all the genes whose number of matchedseeds is close to nmax. This proximity is determined by assuming that the number of matchedseeds follows a binomial distribution. Thus we compute a confidence interval for nmax (with aconfidence interval of 99.9% by default) which gives us a range [na, nb]. We finally consider theset of candidate genes C ⋆
G(s) = {g ∈ G | |s|I (g) ≥ na}: All the genes from G which have at least naseeds matching on s are aligned against s using dynamic programming as on the Figure 4. Thedesignation algorithm runs in O(M ′n), whereM ′ ≤ M is the total size of these candidate genes.For example, on the IGH germlines, a typical value of nmax = 200 on sequences of length about300 gives [na, nb] = [174, 216], and there are usually less than 10 genes/alleles (out of 350+)matching at least 174 seeds, thusM ′ ≈ 10 × 200 ≪ M ≈ 350 × 200.

4. Evaluation and results
4.1. Datasets

Five datasets were used to benchmark the detection and the designation of V(D)J recombi-nations.
Evaluation of the specificity of the detection.

• A. 106 random DNA sequences, generated with %GC ratios and sequence length similarto the V(D)J IGH germline genes, in which no V(D)J recombination should be found.
Evaluation of the sensitivity of the detection.

• B. 2.3 · 106 synthetic sequences on all loci, both for regular and “incomplete” recombina-tions. For each possible combination of V, D, and J genes, 10 sequences were generated,by taking the full gene lengths. Insertions and deletions at the junctions were added ac-cording to a normal distribution of 5± 5, and substitutions to the whole sequence on 2%of the nucleotides to take into account sequencing artifacts but also individual variations.We also generated datasets with 5% and 10% substitutions (resp. B5% and B10%).
• C. TRB simulated sequences from the benchmark of Afzal et al. (2019).We focus on theirdatasets with more than a single clone and with some errors (low, .1%, and medium, 1%).Each dataset is made of 1M sequences of 250bp. For each error rate, we average theresults obtained for the datasets with varying level of clonal populations, as they werevery similar.

Evaluation of the correctness of the V(D)J designation.
• D. 1,351 sequences from LIGM-DB (Giudicelli et al., 2006), focusing on the two mostrepresented loci in LIGM-DB, IGH and IGK.
• E. 301 sequences from patient data with curated VDJ designations (Salson et al., 2016).

4.2. Software
Methods described here were implemented in C++ in Vidjil-algo version 2025.02 and com-pared toVidjil-algo 2018.02.Webenchmarked againstMiXCR (versions 3.0.13 and 4.4.1) (Bolotinet al., 2015). MiXCR is widely used, and, although it is not open-source, its code is available. Af-ter systematic comparison between several V(D)J analysis tools, MiXCR was assessed by Afzalet al. (2019) as the most balanced generic tools in terms of flexibility and accuracy. Note that
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Figure 5 – Detection results of MiXCR and Vidjil-algo on random sequences (dataset A)
MiXCR and Vidjil-algo were launched on the same germline sequences coming from the sameIMGT GENE-DB version. Details on germline sequences and used seeds are shown in Supple-mentary File 1, Table 1. The four programs were launched on one thread on a server with 2Intel Xeon Gold 6130 processors (2.10GHz, 32MB cache) and 128GB RAM. The benchmark isfully reproducible (from the retrieval of the data to the production of the paper’s figures) usingSnakemake (Köster and Rahmann, 2012).
4.3. V(D)J detection
4.3.1. Specificity and sensitivity. We restrict MiXCR to launch the smallest analysis it can do– performing a V(D)J designation on each sequence. Thus the results they produce are muchmore detailed than what Vidjil-algo provides. On the opposite, Vidjil-algo first tries to identifya V(D)J recombination, then determines an identifier for this V(D)J recombination and clustersall sequences sharing the same identifier into clonotypes. Then, only the 100 most abundantclonotypes are designated (which is not discussed in this section).

On random sequences (dataset A, see Figure 5), MiXCR3 detects hundreds of spurious V(D)Jrecombinations among the million random sequences. However we note a large improvement inspecificity, with a two-fold improvement betweenMiXCR 3 andMiXCR 4. Vidjil-2025.02 reports7 spurious recombinations, while Vidjil-2018.02 was the only one not to report any.
Sensitivity is assessed with the dataset B (Figure 6), consisting of randomly generated V(D)Jrecombinations with 2% substitutions. Our new algorithm is very sensitive to detect those re-combinations. It is the most sensitive among all the tested tools. It is the only one to reach 100%sensitivity on all loci. This is a noticeable improvement compared to previous versions of Vidjil-algo. In Supplementary File 1, Figure 1, we show that even with 10% errors the new heuristicshows very good results. On average, on the complete recombinations, it reaches 99.1% detec-tion which is better than Vidjil-2018.02 (66.7%) and MiXCR 3 (94.8%) but less than MiXCR 4(100.0%). In Supplementary File 1, Figure 3, we show that with 5% errors (20% of them being in-dels), the detection ratios of Vidjil-2025.02 and MiXCR 4 are mainly unchanged. Vidjil-2018.02is much more affected by indels. This is due to the spaced seeds used in Vidjil-algo. In Vidjil-2018.02, we couldn’t use seeds of different lengths for V and J, thus the seeds are too long inthe J gene to still have a significant number of hits matching in spite of the indels. This show thatour new approch is much more robust to noisy data.
On the TRB benchmark from Afzal et al. (2019) (dataset C, Figure 7) our new algorithm isthe most sensitive in the low error condition (.1%) as it is the only one to detect all the recombi-nations. In the medium error condition (1%), it detects 99.983%. In this second condition, thisis slightly less than MiXCR3 (99.996%) but more than MiXCR 4 (99.94%). On IGH and IGK re-combinations from LIGM-DB (dataset D, Figure 8), MiXCR 3 gives again the best results for thedetection. However Vidjil-algo’s new heuristic improves the former one, and for IGH, is nowcloser to MiXCR 4 results. The improvement is similar on IGK. However in this second case, ournew heuristics gives better detection results than MiXCR 4. The reason why IGK results areworse is that IGK recombined sequences in LIGM-DB are very short on the J side, with 60%of the J gene being at most 20bp long and even 20% sequences at most 10bp long, whereasgerminal IGKJ genes are 38-39bp long. There are 62 sequences that Vidjil-algo did not detect
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Table 2 – Detection on MiXCR, and Vidjil-algo on curated V(D)J designations (dataset E)
locus nb. seq. mixcr3 mixcr4 vidjil-2018.02 vidjil-2025.02

IGH 94 95 94 92 90
IGK 2 2 2 2 2
IGL 2 2 2 2 2
TRA 1 1 1 1 1
TRB 16 15 15 16 16
TRD 18 18 18 18 18
TRG 31 30 31 30 31

IGH+ 23 23 23
IGK+ 29 29 29

TRA+D 28 28 26
TRB+ 20 19 19
TRD+ 31 25 25

and MiXCR 3 did: All of them had an IGKJ gene 12bp long or shorter. With so short sequences,a single mutation may prevent any spaced seed to match the J sequence.
On the dataset E, results are shown in Table 2. Results are very similar between the fourprograms for complete recombinations (IGH, IGK, IGL, TRA, TRB, TRD, TRG). As expected, onlyVidjil-algo detects some incomplete recombinations, as MiXCR does not deal with them.

4.3.2. Speed and memory. On top of that, the new algorithm is much quicker than the formerversion of Vidjil-algo (at least three times quicker on large enough datasets). For datasets A, B,and C, it is between 15 and 40 times quicker than MiXCR. The difference is less striking on smalldatasets due to the construction of the Aho-Corasick automaton at each startup. In spite ofthis data structure, the memory consumption is lower than before because it used lookup tables(that were sparse). MiXCR almost systematically has the highest memory consumption, apartfrom dataset with a large number of distinct recombinations (IGH on Figure 6).
4.4. V(D)J designation

V(D)J designations predicted by the software, taking the same reference genes, are comparedto the reference datasets D and E (Table 3 and Figure 8). Only the names of the V and of theJ genes are checked (or D and J genes for incomplete recombinations). As some genes are verysimilar, designating one gene is very dependant to fine tunings in the scoring of the sequencecomparisons. The output of both software could thus be considered correct in some cases evenwhen departing from those reference datasets – and note that the dataset E already containssome alternative acceptable designations.
Both Vidjil-algo and MiXCR designate the same V(D)J recombinations than in the referencedatasets in most of the sequences. Designations on the complete recombinations (IGH, TRB,TRD, TRG) are particularly close to the curated dataset E, with more than 90% correct desig-nations, showing that the software do not have any specific difficulty to identify the V and Jgenes involved (see also Supplementary File 1, Figure 2). Surprisingly, MiXCR 4 with the defaultparameters does not designate some sequences in the way that MiXCR 3 did. This may comefrom stricter parameters to improve specificity, as it was also shown on random sequences inFigure 5. Note also that in some cases (see IGK in Figure 8, dataset D), the detection step ofVidjil-algo can assign borderline sequences to an incorrect locus. During the designation stepsuch an error would be fixed.
Anyway, while staying very specific, the new Vidjil-algo designation is now similar to theresults obtained with MiXCR4. Moreover, as expected, only Vidjil is capable of handling incom-plete recombinations (Table 3), with 82% correct designations on incomplete recombinations.
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Table 3 – Correct designation on V(D)J recombinations on manually curated V(D)J se-quences (dataset E) with MiXCR and Vidjil-algo. nb. seq. is the number of sequences inthe dataset with the given locus.
locus nb. seq. mixcr3 mixcr4 vidjil-2018.02 vidjil-2025.02

IGH 94 89 87 86 87
IGK 2 2 2 2 2
IGL 2 2 2 2 2
TRA 1 1 1 1 1
TRB 16 14 15 14 15
TRD 18 15 14 15 18
TRG 31 28 28 28 28

IGH+ 23 1 21 20
IGK+ 29 19 18

TRA+D 28 2 21 23
TRB+ 20 2 19 19
TRD+ 31 26 27

On the E dataset, our new heuristic to avoid the alignment against many genes improves timeefficiency by over 10 times. Thus, Vidjil time consumption of designation with our new heuristicbecomes comparable toMiXCR, while Vidjil-algo didn’t optimize the alignment by itself (by usingSIMD for instance). Note that in the classic usage, and due to its approach, Vidjil-algo can limitthe designation to the 100 most abundant clonotypes.
5. Discussion and perspectives

Studying immune repertoire by high-throughput sequencing for immunological or onco-hema-tological applications requires adapted methods. We introduced a seed-based alignment-freealgorithm, based on an Aho-Corasick automaton, to detect in a single pass, in almost linear time(O(ℓ′n)), V(D)J recombinations coming from different loci, as well as a filtering algorithm improv-ing the designation of V(D)J gene segments from a recombination. Both algorithms are fast andsensitive, and come with a statistical evaluation of their results, including on irregular or incom-plete recombinations.
Our solution is another example where alignment-free approaches, here seed-based heuris-tics, provide pertinent results to analyze huge datasets, using a fraction of the resources requiredby alignment-based approaches. With this contribution, we almost have a linear processing ofsequences. Other improvements on time ormemory consumption are still possible but, as shownin our benchmarks, improvements on the quality of the results can only be marginal.
Our new version of Vidjil-algo is hence one of the fastest available programs for analyzinglarge datasets with billions of immune recombinations, and is moreover released under an open-source licence. The two algorithms provided an up to 5× speed-up compared to the previousVidjil-algo version, still keeping excellent sensibility and specificity and a low memory footprint.Other software provide more information – notably the V(D)J designation of each sequence– but they are not necessarily needed in several applications. We also show that Vidjil-algo ishighly effective to identify and filter sequences that do not exhibit V(D)J recombinations. Thisis a feature of interest to analyze large sequencing datasets, such as RNA-seq data that containvery few V(D)J recombinations.
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Figure 6 – Detection by MiXCR and Vidjil-algo on synthetic V(D)J recombinations on allhuman loci (dataset B). The X-axis on the time diagrams is logarithmic.
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Vidjil-algo is already used in reference protocols dealing with sequencing and analyzing im-munogenetical data (Langlois de Septenville et al., 2022; Villarese et al., 2022). With the rise oflarge-scale analysis of public datasets (Edgar et al., 2022), Vidjil-algo could become one of thepreferred methods for V(D)J detection on such large-scale analyses. In a second time, MiXCRcould be used to obtain detailed informations on the V(D)J recombinations detected by Vidjil-algo.
As the Aho-Corasick automaton stores words projected from different seeds, seed optimiza-tion could be further studied. The smaller the seed, themore sensitive, but the less specific. Generepertoires have very different sizes according to the locus, with for example more than 200 kBof sequences on IGH V-J and just a few nucleotides for the TRD+ Dd2/Dd3 (see SupplementaryFile 1, Figure 1). In the assessed version, shorter seed sizes were selected for J genes, enablinga better recognition. Further work could optimize the seed lengths and weights depending oneach recombination system.
More generally, research could include efficient detection and designation of recombinedsequences with three or more segments, as well as improving again the statistical evaluation ofrecombinations.
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